Swarm Intelligence - Based Hybrid Models for Short - Term Power Load Prediction
نویسندگان
چکیده
Swarm intelligence (SI) is widely and successfully applied in the engineering field to solve practical optimization problems because various hybrid models, which are based on the SI algorithm and statistical models, are developed to further improve the predictive abilities. In this paper, hybrid intelligent forecasting models based on the cuckoo search (CS) as well as the singular spectrum analysis (SSA), time series, and machine learning methods are proposed to conduct short-term power load prediction. The forecasting performance of the proposed models is augmented by a rolling multistep strategy over the prediction horizon. The test results are representative of the out-performance of the SSA andCS in tuning the seasonal autoregressive integratedmoving average (SARIMA) and support vector regression (SVR) in improving load forecasting, which indicates that both the SSA-based data denoising and SI-based intelligent optimization strategy can effectively improve the model’s predictive performance. Additionally, the proposed CS-SSA-SARIMA and CS-SSA-SVR models provide very impressive forecasting results, demonstrating their strong robustness and universal forecasting capacities in terms of short-term power load prediction 24 hours in advance.
منابع مشابه
Study on Short-Term Load Forecasting Method Based on the PSO and SVM model
The short-term load forecasting is an important method for security dispatching and economical operation in electric power system, and its prediction accuracy directly affects the operating reliability of the electric system. So the global optimization ability of particle swarm optimization (PSO) algorithm and classification prediction ability of support vector machine (SVM) are combined in ord...
متن کاملShort term load forecast by using Locally Linear Embedding manifold learning and a hybrid RBF-Fuzzy network
The aim of the short term load forecasting is to forecast the electric power load for unit commitment, evaluating the reliability of the system, economic dispatch, and so on. Short term load forecasting obviously plays an important role in traditional non-cooperative power systems. Moreover, in a restructured power system a generator company (GENCO) should predict the system demand and its corr...
متن کاملWind power prediction with different artificial intelligence models
In this paper different prediction models based on methods of the artificial intelligence are studied for wind power prediction of single wind farms. The used methods are neural networks, mixture of experts, support vector machines and nearest neighbour search with a superior particle swarm optimization. We build for day-ahead prediction and for short-term prediction with a prediction horizon o...
متن کاملShort term electric load prediction based on deep neural network and wavelet transform and input selection
Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...
متن کاملOptimizing of SVM with Hybrid PSO and Genetic Algorithm in Power Load Forecasting
In this paper, we propose Hybrid Particle Swarm Optimization (HPSO) with genetic algorithm(GA) mutation to optimize the SVM forecasting model. In the process of doing so, we first use HPSO with genetic algorithm to make pretreatment of the data. PSO with GA model is a method for finding a solution of stochastic global optimizer based on swarm intelligence. Using the interaction of particles, PS...
متن کامل